
How TrueProfile.io® is using
the Ethereum Blockchain to
empower users to own their
data again by René Seifert & Florian Weigand (August 2019)

Summary

TrueProfile.io is the new standard of docu-
ment verification for diplomas, employers’
references, licenses and other trust-based
objects from its issuing source. It puts the
individual in control of safe-guarding their data
and allowing it to be shared in a variety of ways
with whomever they choose. As one major
element, TrueProfile.io stores this verification on
the Ethereum Blockchain so that customers can
access proof of their verification independently
of the service - even if TrueProfile.io should
cease to exist. In essence, this concept similarly
supports identity services both in a traditional
sense and in a self-sovereign one. In a nutshell,
the validated data belongs to the user and not to
the company validating it.

02 Summary

TrueProfile.io is the industry leader for the verification of applicant

qualifications such as diplomas or employers references. TrueProfile.

io, powered by the DataFlow Group (founded 2006), conducts

Primary Source Verification (PSV) for every submitted document

by reaching out to the Issuing Authority (IA) like a university, an

employer or a licensing body to verify the authenticity of the

document. Furthermore, during verification, the DataFlow Group

manually checks that the Aurotity is accredited and legitimate1.

If these conditions are met, TrueProfile.io issues a so-called

TrueProof - the basic building block of its service which is a single

positively verified document. TrueProfile.io uses Blockchain

technology to store a TrueProof so that customers can access their

TrueProof independently of TrueProfile.io and even if at some point

in time TrueProfile.io should no longer be in operation.

1 The manual checks by TrueProfile.io ensure that only correct information is written on the Blockchain,
so entries like the following are not possible:
https://www.verisart.com/works/23f2c64a-08c6-4a42-8013-84ac8422dffb

The basic
concept of
TrueProfile.io®

03 Basic concept

https://www.verisart.com/works/23f2c64a-08c6-4a42-8013-84ac8422dffb

01
Introduction

In 2009, the Bitcoin white paper2 was

published by a person or group called

Satoshi Nakamoto. Bitcoin is a decentralized

transaction system based on Blockchain

technology. It is decentralized in a way

which means that no central third party has

control over the transactions written on

the Blockchain. Furthermore, transactions

accepted by the network are immutable

as the network protects them from

manipulation.

To achieve this, all transactions need to be

ordered in relation to the time they occurred.

These transactions are bundled in blocks

that are chained one after another; the

following blocks secure the previous blocks

and this process secures the integrity of the

system. In Bitcoin, one block per approx. 10

minutes is written. Ordering transactions

by time and chaining them together is

perfectly usable for timestamping3 and is a

method already implemented by Satoshi

Nakamoto. For example, the following

text is written in the first block of Bitcoin

(Genesis block): “The Times 03/Jan/2009

Chancellor on brink of second bailout for

banks”4. This data is stored forever and can

not be changed without changing all blocks

which are built on the Genesis block. That’s

why a Blockchain is the perfect way to

carbonate data forever.

At the end of 2013, Vitalik Buterin5 took

the idea of Bitcoin and introduced the

concept of smart contracts. For Bitcoin,

the software code that is executed for

one transaction is defined in a limited set

of OPcodes6, each of which performs a

specific command or function on the Bitcoin

Blockchain. Buterin suggested to use a

Turing complete programming language

instead of the limited set of Bitcoin

OPcodes. Which makes it possible to bind

any arbitrary software code to an Ethereum

address - now known as a smart contract.

2 https://bitcoin.org/bitcoin.pdf 3 https://arxiv.org/abs/1502.04015 4 https://en.bitcoin.it/wiki/Genesis_block

5 https://github.com/ethereum/wiki/wiki/White-Paper 6 https://en.bitcoin.it/wiki/Script

04 Intro

https://bitcoin.org/bitcoin.pdf
https://arxiv.org/abs/1502.04015
https://en.bitcoin.it/wiki/Genesis_block
https://github.com/ethereum/wiki/wiki/White-Paper
https://en.bitcoin.it/wiki/Script

7 https://blog.comae.io/the-280m-ethereums-bug-f28e5de43513

8 https://en.wikipedia.org/wiki/The_DAO_(organization)#History

9 https://etherscan.io/chartsync/chainarchive

10 https://www.blockchain.com/en/charts/blocks-size?timespan=2years

In contrast to Bitcoin, this leads to more flexibility as smart contracts

can be added over time without any changes to the underlying

Blockchain software structure.

But this flexibility does not come for free. The main issue with this

new approach is that once a smart contract is deployed the logic can

not be changed anymore. If the code is flawed, tokens managed by

this contract can be, for example, frozen7 or stolen8. Furthermore,

Ethereum has big issues with the transactions count and the data

volume sent to the smart contracts. By July 2019, a full archive node

of the Ethereum network needs to store almost 3 TB of data while

a Bitcoin node ‘only’ needs to sync approx. 235 GB10 of data. In the

Appendix A section we give a detailed explanation why we, for

our use case, went for Ethereum and not Bitcoin as the underlying

technology.

05 Intro

https://blog.comae.io/the-280m-ethereums-bug-f28e5de43513
https://en.wikipedia.org/wiki/The_DAO_(organization)#History
https://etherscan.io/chartsync/chainarchive
https://www.blockchain.com/en/charts/blocks-size?timespan=2years

4 | 2 powered by The DataFlow Group

University

State, Country

Qualification

Conferred Date/Examination Date/

Issue Date

Mode of Study

Correct

Correct

Correct

Correct

Correct

Correct

Correct

Singapore Medical University

Singapore

Doctor of Medicine

04 August 2001

Completed

Detail Information Provided Information Verified

GT19760401PassportFilipinoNationality

01 Apr 1976 / PhilippinesDate of birth / Place of birthGrace TorresName

DFP1-0808-200001
Case Reference

Education TrueProof

Singapore Medical University

Doctor of Medicine

02
Pragmatic
Standard

with a
Hybrid

Approach

Blockchain purists, obviously, will argue that the sheer existence

of a centralized unit like TrueProfile.io/the DataFlow Group makes

a travesty out of a radically decentralized set-up without any

mediator whatsoever. On a theoretical level, they might be right. Yet,

TrueProfile.io has purposefully chosen this path as it sees the world

in pragmatic terms as what it is today and how it can serve users who

intend to present themselves as trusted candidates - especially in

an international, professional context. Instead of trying to onboard

every university, every employer and every licensing body around

the world to hold and safeguard their private keys for signature,

TrueProfile.io is completely technology agnostic.

When it comes to obtaining its verification from the issuing source,

the methods can range from writing, calls or even personal visits

to the site. Based on this (positive) input, TrueProfile.io will issue a

TrueProof. All the TrueProofs belonging to a user will be collected on

their myTrueProfile page on TrueProfile.io11.

11 See a sample a myTrueProfile page
https://trueprofile.io/true-profile/7f86f18473192e41489d1b3b6362e02

06 Hybrid Approach

https://trueprofile.io/true-profile/7f86f18473192e41489d1b3b6362e02

User-triggered (“Member”)

TrueProof PDF

Storing the PDF hash on the Blockchain. The

member might send a TrueProof PDF to any

3rd party who can then check its validity against

the Blockchain | de-centralized approach.12.

TrueProof JSON13 (pure data object)

Bringing the idea of hashing the PDF to the

next level and store the hash of the plain data

object in form of JSON on the Blockchain | de-

centralized approach.

MyTrueProfile.io

Making the entire myTrueProfile public on a

randomized link and sharing it with 3rd parties

of the user’s choice | centralized approach.

Employer-induced (“Business Partner”):

A Business Partner sends pre-paid voucher codes to an applicant

who in turn signs up, redeems the voucher and conducts PSV. Via

their log in, the Business Partner is presented with the TrueProofs

and the myTrueProfile of the applicant while the member

safeguards their TrueProofs on their myTrueProfile for future

utilization.

Platform-driven (“TrueProfile.io Connect”)

Bringing trust to 3rd party profile-based services by integrating

the attribute “verified” using the TrueProof JSON.

This hybrid approach extends even

further: TrueProfile.io puts the user in

control of their verified data and enables

them to expose this information to third

parties of their choice:

12 For a live demo of the Blockchain in action scroll down on https://www.trueprofile.io/member
to “Take a free tour of our services”

13 https://en.wikipedia.org/wiki/JSON

07 Hybrid Approach

https://www.trueprofile.io/member
https://en.wikipedia.org/wiki/JSON

Through all of these means, centralized and decentralized,

TrueProfile.io aims to further the aspiration of becoming the

standard for document verification. But what does that “standard”

mean and how do we get there? Let’s first declare what it will not

be or rather how it will not be achieved: It is very unlikely that any

supra-national body like the United Nations, The Hague Convention

or any similar consortium will all of a sudden and solemnly declare

something to be “The Standard for Document Verification”. By

contrast, the standard will be achieved initially through adoption

from a few key actors, ideally in one geography - and/or industry-

cluster, before spreading out further horizontally and vertically

until it will accelerate momentum towards broad usage and

acceptance.

In order to reach this place, is TrueProfile.io not subject to the

archetypical chicken-and-egg problem where individuals will want

to have a verification only if it’s sufficiently accepted by employers,

immigration authorities, regulators and vice versa, employers,

immigration authorities and regulators will only accept individuals

with TrueProofs if there is a critical mass of them?

Yes, indeed, therefore TrueProfile.io strives to drive both utilization

and acceptance of TrueProfile.io from both sides of the market

starting with present and past applicants from the DataFlow Group.

From there it extends to the “outer world” of individuals who need

to present trusted documents through efforts in sales, business

development and partnerships. Once a certain critical mass is

reached, TrueProfile.io will start engaging strongly via lobbying

and direct conversations with governmental bodies, universities

and employers to seek acceptance for its standard. Narrating these

points of acceptance back to the B2C side of document owners

will let them be safely convinced that TrueProofs are being broadly

accepted and hence will embark utilizing them.

08 Hybrid Approach

03
Extension of

TrueProfile.io®

In a subsequent step, once creating and

administering cryptographic keys has

evolved further into mainstream, the Issuing

Authority of documents would require a

profile (aka identity on the Blockchain)

themselves. In this scenario, a service

like TrueProfile.io would sign initially

whereas the Issuing Authority would co-

sign the data as well. In a final stage of full

decentralization, Issuing Authorities could

be enabled to sign the TrueProofs directly.

Another direction where TrueProfile.io is

perfectly lending itself towards is a hybrid

approach of building a digital identity

of users who possess the property of

being portable. Combining an “Identity

TrueProof” based on banking KYC-robust

online verification of government issued

documents (ID or passport) with one or

several self-sovereign identity initiatives

like uPort14 would establish an interoperable

framework for further network distribution.

Looking from another perspective, opening

up the export and inclusion of document

TrueProofs into these self-sovereign

identities under the full control of the

individual should be made available. Last

but not least, considering participation in

wider initiatives like ID202015 appears to be

another logical option.

14 https://www.uport.me/ 15 https://id2020.org/

09 Extension of TrueProfile.io

https://www.uport.me/
https://www.trueprofile.io/member
https://id2020.org/

04
The strength
of data on a
Blockchain

As the Blockchain is replicated across many thousands of computers,

it would be a waste of storage to store the full documents on all

replicated nodes. It would also become critical for privacy if CV

data was stored on a publicly accessible Blockchain like Ethereum.

That is why TrueProfile.io proves the authenticity of a document

by storing the documents fingerprint, but not the document itself

on the Blockchain. The fingerprint is comparable to the human

fingerprint. If a fingerprint is found, it ensures that the fingerprint

came exactly from this document as no other document can create

the same fingerprint. Fingerprints also solve the privacy concerns,

as the fingerprint of a document does not reveal any information

about the document’s content. For example, in the same way that a

human fingerprint does not give any information about the owner’s

hair colour. In computer science those fingerprints are called hashes.

For Ethereum and Bitcoin the hash named SHA-256, member of the

SHA-216 family, is used.

16 https://en.wikipedia.org/wiki/SHA-2

10 The strength of data

https://en.wikipedia.org/wiki/SHA-2

05
Technical

design of our
hashing

algorithm

In this chapter we want to describe
the hash mechanism we implemented
at TrueProfile.io.

While calculating the SHA-256 of a file like the
TrueProof PDF is a straight forward calculation,
the hash of a data object in JSON data format is
not. There has been two major issues for us: the
normalization problem and the wish to validate
only a subset of the JSON object.

16 https://en.wikipedia.org/wiki/SHA-2

11 Our hashing algorithm

https://en.wikipedia.org/wiki/SHA-2

{

	 “first_name”: “Grace”,

	 “last:_name”: “Torres”

}

-and-

{

	 “last:_name”: “Torres”,

	 “first_name”: “Grace”

}

Let’s start with the normalization issue. For a JSON object, unlike

others, the order of the elements does not matter. Let’s look at two

example JSON objects:

As you see the two JSON object have the exact same meaning - a

person’s first and last name - so the hash of the two objects should

return the same value. Implementing a naive JSON to string and

hash, the resulting string would not cover this.

{

	 “name”: “Grace Torres”,

	 “grade”: 4

}

-and-

{

	 “name”: “Grace Torres”,

	 “grade”: “4.0”

}

In addition to ordering, the representation of numbers can also

cause issues. Let’s look at this example:

Other issues such as if there is a space between the key and value in

the JSON representation will also matter if a standard JSON to string

implementation is used. All examples will not produce the same hash

with a JSON to string method which will be hashed after. That’s why

we needed to implement a smart hashing mechanism.

12 Our hashing algorithm

The next goal was to let our users decide what data they want to

share. For a standard hashing implementation it is always mandatory

to reveal the full data object to reproduce the hash. At TrueProfile.

io we take privacy very seriously. For example, if a member wants to

only share certain parts of his TrueProof on LinkedIn we needed a

mechanism which allows a user to hide specific data and still gener-

ate the same hash.

To keep specific data private, it is mandatory not to hash the full

JSON object once, but instead each element of the JSON object

individually. The individual hashes can then be joined together and

hashed again (similar to a Merkle Tree17). The user can then choose

which values they want to reveal from the full object. Unfortunate-

ly this approach leads to one serious issue. When each element is

hashed individually and, for example, a date field like ‘Grade’ has a

finite set of possible values an attacker who knows the hash of this el-

ement can simply try all finite possibilities and will only get a match-

ing hash if the input value was correct. So, the attacker will basically

be able to use brute force to gain the grade from the hash value they

obtained. To mitigate this issue we need to add a random salt value

to each element and return it to our users.

Our C# implementation is based on Ben Laurie’s version Ob-

jectHash18. We take a JSON object and normalize it so that e.g. the

ordering and the casting issue between int and float does not matter.

17 https://en.wikipedia.org/wiki/Merkle_tree

18 https://github.com/benlaurie/objecthash

13 Our hashing algorithm

The full implementation
is open source under MIT
licence and can be found

on Github:

https://github.com/weigandf/notarization-objecthash

https://en.wikipedia.org/wiki/Merkle_tree
https://github.com/benlaurie/objecthash

06
Why we

need a smart
contract

Changing existing data on a Blockchain is impossible - a Blockchain can not forget

data, because it stores data immutably. But imagine a (nearly impossible) case where

TrueProfile.io issued a TrueProof and after some time it became clear that the data is

fraudulent. Due to the restriction of a Blockchain, the user could always use the certified

data from TrueProfile.io and mislead other people with the invalid data. Thus, we need to

implement a protocol on a Blockchain that provides a subsequent transaction to revoke the

original document.

That is why for our use case we would need a Blockchain to support the following three

methods:

 ADD

Add new hash to the Blockchain

 REVOKE

Revoke a hash from the Blockchain

if fraud is detected

 IS VALID

Check if a hash is valid by checking

it on the Blockchain

14 Smart contract

07
Technical
details for
our smart
contracts

In the following section, the smart
contracts implemented by

TrueProfile.io are described on a technical
level. You might want to skip this part if you

are not familiar with the development of
smart contracts in Solidity.

Our smart contracts are open
source and under MIT license.

They can be found on Etherscan:

https://etherscan.io/address/0x000d2d31815990
fca6f69dfd978c4d4a56b2ed6b#code

15 Technical details

https://etherscan.io/address/0x000d2d31815990fca6f69dfd978c4d4a56b2ed6b#code
https://etherscan.io/address/0x000d2d31815990fca6f69dfd978c4d4a56b2ed6b#code
https://etherscan.io/address/0x000d2d31815990fca6f69dfd978c4d4a56b2ed6b#code

Here are the detailed descriptions
of the three smart contracts:

The full implementation is split into
three different smart contracts:

1 – Accessible
Refers to the smart contract which manages the access rights

of certain calls in smart contracts by implementing modifiers.

The smart contract ‘Accessible’ is extended by the two other smart

contracts. Thus, the other two smart contracts inherit the modifier

properties.

2 – TrueProfile.io Storage
Refers to the smart contract which is used to store the full state of

the TrueProofs which are added or revoked.

3 – TrueProfile.io Logic
contains all the logic which is needed to add and revoke True-

Proofs. There is no data storage in this contract. All data is sent and

retrieved from the storage contract.

1 – Accessible (Subclass)

Accessible is a subclass to manage the access rights of all smart

contracts who inherit it. Each contract inheriting from Accessible

will have an Owner that the smart contract belongs to. Other than

that, each contract will have a list of addresses which can

access certain methods of the smart contract. So there are two

different access levels:

Only the owner of the contract is allowed to add or remove address-

es which can access functions of the smart contract. By default, the

first owner of the smart contract is the address from which the con-

tract was created. The owner can transfer the ownership of the con-

tract to a new owner of their choice.

Accessible
multiple addresses which

can be added and re-

moved only by the owner

Ownership
the one address who

created the contract

16 Technical details

2 – TrueProfile.io Storage
The contract used for storing all data is called the TrueProfileStorage

contract. It inherits from the smart contract ‘Accessible’ and thus has

an owner (the creator of the TrueProfileStorage contract) and a list

of persons who can access the smart contract.

This smart contract is used to abstract all Ethereum storage

operations and this manner handles the full state of the smart

contract. In the next section, we will introduce the TrueProfileLogic

contract. The logic will have direct access to the storage and can

manipulate the state of the contract only by calling the storage

contract.

This contract defines a variety of mappings to store all needed data.

The most important mapping is the signature storage. This mapping

is used to store a corresponding signature for a hash it commits to.

Other than the signature, there are multiple other mappings. They

are currently not used, but later if the logic is changed, the mappings

can be used to store any arbitrary data if needed in the logic layer.

The TrueProfile.io Storage contract provides a CRUD (create, read,

update, delete) interface to access all those mappings. Access is

only possible if the administrator added the address as with access

enabled.

3 – TrueProfile.io Logic
This contract is used to access the storage introduced in the last

section. The current implementation of the smart contract has three

main functions:

A / Add TrueProof

This function is used to add a new TrueProof to the contract. The

function takes a signature as input, validates it against the hash

and checks if the callee belongs to the list of addresses who have

been granted access to the smart contract. If everything is correct,

including the signature, the TrueProof hash is added to the storage

contract.

B / Revoke TrueProof

This function is used to revoke a TrueProof. There is a low probabili-

ty that a TrueProof was issued due to a mistake from an Issuing Au-

thority or outright fraud. However, in this instance there is a revoke

function which can be called to mark the hash as invalid. The revoke

function also stores a reason ID for the revocation in the Blockchain.

This helps to prevent misuse of the system. We don’t want to validate

something forever which is not correct.

C / IsValid TrueProof

The isValidTrueProof function provides an interface to check if a

certain hash is currently a valid TrueProof. The contract checks if a

valid signature is stored for a certain hash. It first validates the sig-

nature for accuracy and in a second step whether the TrueProof was

not revoked. If both checks return true the function returns valid. As

this is a direct function of the smart contract, this method can also be

called directly from third party services like Etherscan19.

19 https://etherscan.io/

17 Technical details

https://etherscan.io/

Appendix

Bitcoin is the first implementation of a

Blockchain that is widely20 used. Bitcoin has

many advantages over other Blockchain

implementations like Ethereum. The most

important aspect for time stamping is the

high hashrate of Bitcoin21. Modifying data

becomes more expensive as a high hashrate

implies also high costs associated with

the energy used for hashing22. A second

advantage of Bitcoin is the simplicity of

the script language it uses (OP codes23). A

simplistic language makes it easier24 to prove

the correctness of a script but on the other

hand complicates development. Currently,

the functional language Ivy25 tries to make

the Bitcoin script language easier to use by

wrapping the script language in a function

language.

Due to the simplistic design of Bitcoin, the

range of features that can be developed

on top of Bitcoin are very limited.

Ethereum, on the other hand, allows for

the development of more complex scripts

(smart contracts). On Ethereum, there is a

variety of available languages like Solidity,

LLL, Vyper and others. Solidity is the most

widespread language used for smart

contract development. Complex scripts

come with a drawback: the security of the

smart contracts is not formally verifiable26

which increases the sensitivity to bugs or

critical issues27. Therefore, substantial tests

are necessary.

Appendix A

Why Ethereum was chosen as the

underlying protocol instead of Bitcoin

20 https://coinmarketcap.com/de/

21 https://blockchain.info/de/charts/hash-rate

22 https://gobitcoin.io/tools/cost-51-attack/

23 https://en.bitcoin.it/wiki/Script

24 https://hackernoon.com/smart-contracts-turing-completeness-reality-3eb897996621

25 https://github.com/ivy-lang/ivy-bitcoin

26 Formal Verification of Smart Contracts: Short Paper - HAL-Inria, K Bhargavan et. al.

27 https://hackernoon.com/yes-this-kid-really-just-deleted-150-million-dollar-by-messing-around-with-ether-
eums-smart-2d6bb6750bb9

18 Appendix

https://coinmarketcap.com/de/
https://blockchain.info/de/charts/hash-rate
https://gobitcoin.io/tools/cost-51-attack/
https://en.bitcoin.it/wiki/Script
https://hackernoon.com/smart-contracts-turing-completeness-reality-3eb897996621
https://github.com/ivy-lang/ivy-bitcoin
https://hackernoon.com/yes-this-kid-really-just-deleted-150-million-dollar-by-messing-around-with-ethereums-smart-2d6bb6750bb9
https://hackernoon.com/yes-this-kid-really-just-deleted-150-million-dollar-by-messing-around-with-ethereums-smart-2d6bb6750bb9

Appendix B

What the implementation in Bitcoin

would have looked like

As already mentioned, for the certification of documents three main

features are needed:

 ADD

Add new hashes of proven

documents to the Blockchain

 REVOKE

Revoke a hash from the Blockchain

if a TrueProof was issued by accident

 IS VALID

Check if a document is valid by

checking the Blockchain

Changing data on a Blockchain is impossible by the definition of a Block-

chain provided previously. A Blockchain can not forget data, it stores data

immutably. Thus, we need to implement a protocol on a Blockchain that

provides a subsequent transaction to revoke the original document. A sim-

ple protocol on Bitcoin might look like this:

Take the hash of the document and
store it using the

OP_RETURN command.

Prepend a protocol description before
the hash like:

TP ADD <HASH>.

Revoke it by prepending the following
protocol description:

TP REVOKE <HASH>

19 Appendix

The main drawback with Bitcoin as an underlying protocol is that the

protocol definition is not code by law. This protocol is simply enriched

metadata and needs to be communicated. Other than that, it would be

required to search through the full Blockchain and check if once a TP ADD

was found and no TP REVOKE is following.

The next problem of a Bitcoin based protocol is the management of rights.

If a document hash is accessible it can simply be revoked by generating the

TP REVOKE protocol data and then use a transaction with OP_RETURN

to store it in the Bitcoin Blockchain. But not everybody should be allowed

to revoke or create a TP ADD or REVOKE protocol entry in the first place.

The rights management issue can be solved by including only a subset

of allowed addresses to the protocol - the protocol is then permissioned.

All other not defined addresses can not create valid protocol entries. But

due to the, by design, limited capability of the OP codes in Bitcoin it is not

possible to implement a ‘code is law’ protocol on Bitcoin.

That is why for this use case, implementing a smart contract is currently

the best way to go. TrueProfile.io wants to use the Blockchain for what is

possible today, so for that reason TrueProfile.io takes every TrueProof PDF

hash and stores it on the Blockchain.

20 Appendix

Ready to
get started? www.trueprofile.io

